Tutorial

Ensemble Learning คืออะไร

By Arnon Puitrakul - 29 October 2020 - 1 min read min(s)

Ensemble Learning คืออะไร

Ensemble Learning เป็นเทคนิคที่ถูกนำมาใช้ในการทำ Model ที่มีประสิทธิภาพหลายตัวมามาก เพราะเป้าหมายของมันคือการเพิ่ม Performance ให้กับ Model เป็นหลัก ซึ่งหลัก ๆ ที่เรานิยมกัน ก็จะมี Bagging และ Boosting เป็นหลัก วันนี้เราจะมาทำความเข้าใจกันว่ามันคืออะไรกันแน่

Ensemble Learning คืออะไร

เพื่อให้เข้าใจง่าย ๆ เราอยากจะยกตัวอย่างเหตุการณ์สมมุติใกล้ตัวละกัน เราเอง เราเขียน บทความขึ้นมา เราอยากจะรู้ว่า เราเขียนแล้วอ่านรู้เรื่องมั้ย วิธีแรก เราก็อาจจะส่งไปให้เพื่อนเราช่วยอ่าน เพื่อนเราก็จะให้ข้อคิดเห็นกลับมาว่า มันยังไง ว่าซั่น แต่ก็นะ ถ้าเราเลือกเพื่อนที่ Expert มาก ๆ มาอ่าน ก็จะบอกว่า อ่านรู้เรื่อง แต่พอเอาเข้าจริง อ้าว คนอื่นอ่านไม่รู้เรื่อง แบบนี้ก็แย่เลย นี่คือตัวอย่างของการทำ Model ปกติ

ดูท่าจะยาก เอาใหม่ ๆ งั้นเราเขียนแล้ว ลงบทความเลยละกัน แล้วบอกว่า เออ ช่วย Comment มาหน่อยว่าอ่านรู้เรื่องมั้ย (Comment มาด้วย จะดีมาก​ฮ่า ๆ) จากเดิมที่เพื่อนเราคนเดียวช่วยอ่าน ก็จะมีหลายพันคนเข้ามาช่วยกันอ่าน เราจะได้ความเห็นที่หลากหลายมากขึ้น จากตรงนี้ทำให้เราเห็นว่า การที่คนช่วยกันอ่านมากขึ้น มันก็ทำให้การทำงานได้ดีขึ้นนั่นเอง

ในเชิงของ Machine Learning ก็เช่นเดียวกัน ปกติ ถ้าเราสร้าง Model เดียว มันก็เหมือนกับ เราเอาไปถามเพื่อนคนเดียวแหละ อาจจะ Expert มาก จนอ่านรู้เรื่องไปหมด หรือ อาจจะไม่กล้าให้คำตอบจริง ๆ กับเรา แต่ Ensemble Learning เป็นการใช้หลาย ๆ Model ในการทำงาน เพื่อให้ได้ประสิทธิภาพที่ดีขึ้นนั่นเอง

ที่นิยมทั่วไป เราจะใช้เทคนิคการทำ Ensemble Learning อยู่ 2 เทคนิคด้วยกันคือ Bagging และ Boosting ที่จะมีความแตกต่างในการทำงานพอตัว

Bagging

Ensemble Learning Bagging

เริ่มจาก Bagging กันก่อน ในเทคนิคนี้ มันเหมือนกับเราเอาบทความของเราไปถามคนพันคนพร้อม ๆ กันเลยว่าอ่านรู้เรื่องมั้ย (เชื่อว่าคนที่อ่านมาถึงตอนนี้ก็คือ กำหมัดบอกว่า ไม่รู้เรื่อง ไปแล้ว) ในโลกแห่งความเป็นจริง มันเป็นวิธีที่เวลาเราเอาไปใช้จริงมันไม่น่ามีปัญหา เว้นแต่เราจะหาคนไม่ได้นั่นอีกเรื่อง

แต่ในเครื่องคอมพิวเตอร์ คน ที่เราเอามาเทียบ มันก็คือ Model ทีนี้ ถ้าเราบอกว่า เราอยากจะที่จะให้หลาย ๆ  Model มาช่วยกันตัดสินใจออกมา และเราใช้ Model ที่สร้างจาก Parameter และ ข้อมูลเดียวกัน มันก็ไม่แปลกอะไรเลยที่มันจะได้ผลลัพธ์เหมือนกัน ดังนั้น สิ่งสำคัญมาก ๆ คือ Model จะต้องไม่เหมือนกัน ถ้าเอาง่ายแบบไม่คิดอะไรเลย เราก็จับมัน Random แล้วเราก็แบ่งเป็นชุด ๆ แล้วเอาไปทำ Model ก็น่าจะออกมาไม่เหมือนกันละ แต่แหม่ Random มันก็ทำให้ผลที่ได้มันก็ Random ไปด้วยแหละ เพื่อให้มันออกมาไม่ Random มากเราก็อาจจะใช้เทคนิคที่เรียกว่า Bootstrapping ได้ เพื่อให้แต่ละส่วนของ Dataset ที่แบ่งออกมา มีความคล้ายกับ Dataset เต็ม ๆ

หลังจากที่เราได้ Data หลาย ๆ ชุดมาแล้ว เราก็เอามันไปทำออกมาเป็น Model และให้พวกนี้แหละตัดสินใจร่วมกัน แล้วมันจะตัดสินใจร่วมกันอย่างไรละ ? เอาง่าย ๆ เลย มันก็จะมีอยู่ 2 วิธีด้วยกันคือ Averaging และ Voting ก็ตามชื่อเลยคือ การหาค่าเฉลี่ยออกมา และ การโหวต เพื่อให้มันได้ผลสุดท้ายออกมานั่นเอง

การทำแบบนี้มีข้อดีอย่างนึงคือ เราสามารถที่จะ Parallel การทำงานได้ง่ายมาก ๆ เพราะหลักการจริง ๆ มันคือการสร้าง Model หลาย ๆ ตัวที่มันไม่เหมือนกัน เราก็จับ Parallel ได้ง่ายกว่าเยอะ

Boosting

ส่วน Boosting จะเหมือนกับเราเขียนแล้วเอาไปคนนึงอ่านแล้วกลับไปแก้ แล้วให้อีกคนอ่าน ไปเรื่อย ๆ ไส้ในของมันคือ การที่เราเอา Dataset ของเรามา และ เริ่มต้นให้มันมี Weight เท่ากันก่อน เอาไปสร้างเป็น Model และ ปรับน้ำหนักจากผลของ Model ทำแบบนี้ไปเรื่อย ๆ มันก็จะทำให้ Model ของเราทำงานได้ดีขึ้นเรื่อย ๆ

เล่าให้ง่ายขึ้นคือ Model ตัวต่อไป มันก็จะพยายามแก้ปัญหาของ Model เก่าไปเรื่อย ๆ ถ้าเราเอา Model ตัวสุดท้ายมาใช้เลยมันก็ไม่น่าจะมีปัญหาใช่ม่ะ ผิด!! นึกถึงตัวเราเอา ที่แก้ A แล้ว B ก็ผิด พอแก้ B เอ้า A ก็กลับมาผิดอีก นั่นแปลว่า Model แต่ละตัว ก็จะมีความเก่าไม่เหมือนกัน ดังนั้นสิ่งที่ Boosting ทำก็คือ เอาทั้งหมดนั่นแหละ มาใช้ มันก็จะทำให้ประสิทธิภาพมันดีขึ้นแน่ ๆ

วิธีนี้เป็นที่นิยมในการทำงานมาก เพราะมันเป็นวิธีที่ค่อนข้างยืดหยุ่น และ สามารถใช้ได้กับ Learning Method ที่ค่อนข้างหลากหลาย ในขณะที่ปรับลด Bias ของ Model ได้ดีมาก

ใช้ Bagging หรือ Boosting อันไหนดีกว่ากัน ?

โห ถามมาแบบนี้ ตอบยากเลย เอาจริง ๆ เราว่ามันไม่มีวิธีไหนใน 2 อย่างนี้ที่ดีกว่ากันหรอก มันต้องเอาไปปรับใช้กับข้อมูลของเรา บางทีข้อมูลของเรามันอาจจะชอบ Bagging หรือ Boosting ก็ได้

แต่สำหรับเราเอง ถ้าเราอยู่หน้างาน แล้วเราต้องเลือกจริง ๆ เราจะเลือกลอง Bagging ก่อน เพราะมันทำงานเป็น Parallel ทำให้เราได้ผลน่าจะเร็วกว่าการทำงานแบบ Sequential อย่าง Boosting แน่ ๆ ก็ต้องลองเลือก ๆ ใช้กันดู

สรุป : ลองใช้ดู ไม่เสียหาย

Ensemble Learning คือ เทคนิคที่นำหลาย ๆ Model มาทำงานร่วมกัน เพื่อให้ได้ประสิทธิภาพสูงที่สุดเราอาจจะนำ Model ที่สร้างจากหลาย ๆ วิธีมาช่วยกันก็ได้ วันนี้เรามาเล่าเรื่อง Bagging และ Boosting ที่เป็น 2 วิธีในการที่เราทำ Ensemble Learning ก็น่าจะทำให้หลาย ๆ คนเห็นภาพได้ดีขึ้น ส่วนถ้าอยากได้ที่เป็น Math เลย ก็ต้องลองไปหาอ่านเพิ่มดู วันนี้เรามาเป็นพื้นฐานให้เฉย ๆ